Задачи статистики в пакете SPSS

         

21.1 Задания типа верно — не верно

В качестве примера, который мы хотим обработать при помощи SPSS, рассмотрим личностный тест, с помощью которого определяется степень любопытства опрашиваемых.

Вопрос



Правильный ответ

1

У Вас много книг?

Да

2

Ходите ли Вы за покупками всё время в одни и те же магазины?

Нет

3

Считаете ли Вы, что космонавтику развивать необходимо?

Да

4

Вас не интересует, почему на вашего соседа одели наручники?

Нет

5

Можете ли Вы долго заниматься чем-нибудь одним?

Да

6

Регулярно ли Вы смотрите новости?

Да

7

Знаете ли Вы, сколько человек живёт в городе, в котором проживаете Вы?

Да

8

Ходите ли Вы на работу всегда одной и той же дорогой?

Нет

9

Становится ли Вам иногда скучно?

Нет

10

Хотели бы Вы полететь на Луну?

Да

11

Читаете ли Вы ежедневные газеты регулярно?

Да

12

Спрашивали ли Вы уже себя, как будет выглядеть мир через сто лет?

Да

13

Замечаете ли вы иногда, что недовольны тем, что Вы можете и знаете?

Да

14

Предоставите ли Вы себя для научных экспериментов?

Да

15

Интересует ли Вас, сколько зарабатывает ваш сосед?

Да

16

Бездельничаете ли Вы во время отпуска?

Нет

17

Приятней ли Вам находиться в кругу большого количества друзей, нежели с одним другом?

Да

18

Случается ли с вами часто так, что Вы не знаете с чего начать?

Да

Здесь речь идёт о вопросах, на которые следует давать строго определенные ответы: верно или не верно. Ответ верно соответствует наличию любопытства. Такое же самое значение можно присвоить и ответу не верно; при разработке теста, в него рекомендуется включать и такие вопросы, значимым ответом на которые является отрицательный. Это всегда возможно при соответствующей формулировке.

Если следовать Линерту, то для оценки пригодности отдельных пунктов следует применять нижеследующие два критерия:

Индекс сложности

В простейшем случае он представляет собой долю правильных ответов на данный вопрос, взятую в процентах от общего количества ответов. Для вопросов с несколькими возможными ответами и ступенчатыми ответами существуют модифицированные формулы. Удивительно, но для сложных вопросов индекс сложности принимает малые значения, а для лёгких большие. Вопросы с низким и высоким индексом сложности считаются не желательными.

Коэффициент избирательности

Коэффициентом избирательности, который является важным критерием для оценки применимости вопроса, служит корреляционный коэффициент между ответом на вопрос и суммарным показателем теста. В качестве суммарного показателя теста берётся сумма всех ответов. Это означает, что все правильные ответы должны иметь одинаковый знак! К сожалению, этому важному обстоятельству в справочниках уделяется не достаточно внимания. Для приведенного примера это означает, что пункты 2, 4, 8, 9 и 16 перед анализом должны быть подвергнуты перекодировке.

Для определения корреляционного коэффициента Линерт предлагает различные варианты, так, к примеру, двухрядная поточечная корреляция между заданием с ответом верно — не верно и значением масштаба или ранговая корреляция между заданием со ступенчатым ответом и значением масштаба. Как ни странно: SPSS всегда использует коэффициенты Пирсона.

Непригодные для применения пункты обычно отбираются посредством сравнения индексов сложности и избирательности. Самым простым способом является отбор сначала тех вопросов, которые обладают индексом сложности ниже 20 или выше 80, а затем из списка оставшихся вопросов исключаются те, которые имеют самые низкие коэффициенты избирательности. Линерт предлагает рассчитывать ещё и дополнительные показатели вопросов, такие как: индекс однородности, индекс пригодности, селекционный показатель и (если имеется так называемый внешний критерий) коэффициенты действительности.

Коэффициент пригодности

Коэффициент пригодности является важным критерием для оценки результата теста. Он является мерой точности, с которой проводится тестирование некоторого признака. SPSS предлагает для этой цели множество методов; по умолчанию устанавливается альфа Кронбаха (Cronbach's Alpha) со значением, модуль которого находится между 0 и 1. Обработаем наш пример при помощи SPSS.

  •  Откройте файл nuegier.sav.
Помните о том, что вопросы 2, 4, 8, 9 и 16 должны быть перекодированы; их кодовые числа необходимо поменять местами (1 станет 2, 2 станет 1).

  •  Это можно сделать при помощи метода, рассмотренного в главе 8, посредством выбора меню Transform (Трансформировать) Recode (Перекодировать) Into same Variables... (В те же переменные)
Можно было бы также воспользоваться и синтаксисом. Для этого необходимо было бы записать следующие инструкции:

RECODE
item2, item4,  
item8, item9, item16  
(1=2) (2=1).  EXECUTE. 
  •  После перекодировки выберите в меню Analyze (Анализ) Scale (Масштабировать)  Reliability Analysis... (Анализ пригодности) Откроется диалоговое окно Reliability Analysis (Анализ пригодности).
  •  Переменные iteml-itemlS поместите в поле пунктов (Items:). Затем из числа предлагаемых методов расчёта коэффициентов пригодности необходимо выбрать подходящий:

Рис. 21.1: Диалоговое окно Reliability Analysis (Анализ пригодности)

  •  Alpha (Альфа): Альфа Кронбаха (при дихотомических пунктах используется формула Кудера-Ричардсона 20 (Kuder-Richardson- Formula 20))
  •  Split-half (Расщепление на две половины): Определение пригодности с расщеплением на две половины по Спирману-Брауну (Spearman-Brown)
  •  Guttman (Гуттман): Определение нижней границы пригодности Гуттмана
  •  Parallel (Парралельно): Оценка максимального правдоподобия пригодности теста при условии наличия одинаковых дисперсий пунктов
  •  Strict parallel (Строго параллельно): Оценка максимального правдоподобия пригодности теста при условии наличия одинаковых средних значений пунктов и одинаковых дисперсий пунктов.
  •  Оставьте предварительную установку Alpha (Альфа) и щёлкните на выключателе Statistics...(Статистики). Откроется диалоговое окно Reliability AnalysisStatistics (Анализ пригодности: Статистики).
Вы можете произвести следующие виды расчётов:

  •  Descriptives for (Дескриптивные (описательные) статистики для) Item (Пункт): Среднее значение и стандартное отклонение для каждого пункта анкеты или вопроса Scale (Шкала): Среднее значение, дисперсия и стандартное отклонение для значения масштаба

Рис. 21.2: Диалоговое окно Reliability Analysis'.Statistics (Анализ пригодности: Статистики)

Scale if item deleted (Масштабировать, если пункт удалён): Когда при расчёте значения масштаба этот пункт (вопрос) не учитывается, для каждого такого Пункта (ответа на вопрос анкеты), выводятся: среднее значение и дисперсия значения шкалы, корреляция пункта со значением масштаба (то есть избирательность) и альфа Кохрана.

  •  Summaries (Итоги, общие сведения) 
Means (Средние значения): Различные виды статистик для средних значений пунктов

Variances (Дисперсия): Различные виды статистик для дисперсий пунктов

Covariances (Ковариации): Различные виды статистик для ковариаций между пунктами

Correlations (Корреляции): Различные виды статистик для корреляций между пунктами.

  •  Inter-Item (Между пунктами)
Correlations (Корреляции): Корреляционная матрица Covariances (Ковариации): Ковариационная матрица

  •  ANOVA-ТаЫе (Таблица ANOVA)
F test (F тест): Двухфакторный дисперсионный анализ (факторы: наблюдения, пункты) с повторным измерением и одним значением в каждой ячейке Friedman chi-square (Хи-квадрат Фридмана): тест Хи-квадрат Фридмана и коэффициент согласования Кендала (при наличии переменных, относящихся к порядковой шкале)

Cochran chi-square (Хи-квадрат Кохрана): Q Кохрана (при наличии дихотомических переменных).

Далее ещё имеются:

  •  Hottelling's T-square (Т-квадрат Хоттелинга): Тест Хоттелинга для проверки утверждения, что средние значения пунктов равны между собой.
  •  Tukey's test ofadditivity (Критерий аддитивности Тьюки): Тест Тьюки на аддитивность пунктов.
В случае установки опции Intraclass correlation coefficient (Корреляционный коэффициент внутри класса) речь идёт о расчёте корреляционного коэффициента внутри класса (ICC); информацию по этому поводу Вы найдёте в разделе 15.5.

  •  Здесь ограничьтесь активизацией опции Scale if item deleted (Масштабировать, если пункт удалён) и щёлкните на Continue (Далее).
  •  Начните расчёт нажатием ОК.
В окне просмотра появятся результаты расчёта. И в 10 версии вывод этих результатов ещё не производится в новой табличной форме.

RЕLIАВILIТУ ANALYSIS SCALE (ALPHA)

Item-total

Statistics

Scale Mean if Item Deleted

Scale Variance if Item Deleted

Corrected Item-Total Correlation

Alpha if Item Deleted

ITEM1

24,9333

13,5126

,5410

,7664

ITEM2

25,0667

14,4092

,2679

,7862

ITEM3

25,1000

13,5414

,5097

,7684

ITEM4

25,4333

16,0471 -

-,1676

,8052

ITEMS

25,2000

13,6828

,4907

,7701

ITEM6

25,1667

14,5575

,2358

,7883

ITEM7

25,5000

15,2931

,1738

,7887

ITEMS

24,8000

15,1310

,1154

,7942

ITEM9

25,2000

13,8897

,4304

,7745

ITEM10

24,8667

13,8437

,4732

,7717

ITEM11

25,3667

14,2402

,4223

,7760

ITEM12

25,0667

13,3057

,5763

,7633

ITEM13

25,0000

13,2414

,6017

,7615

ITEM14

24,9667

13,8954

,4196

,7752

ITEM15

25,0000

13,3103

,5813

,7630

ITEM16

25,0333

14,0333

,3713

,7787

ITEM17

24,9667

15,3437

,0283

,8023

ITEM18

24,9667

13,9644

,4000

,7766

Reliability Coefficients

N of Cases =30,0

N of Items= 18

Alpha =,7887

Коэффициент пригодности, равный 0,7887, является очень высоким. В колонке с названием Corrected Item-Total Correlation (Откорректированный пункт — суммарная корреляция) находятся коэффициенты избирательности. Основываясь на значении этих коэффициентов, пункты 4 и 17 можно считать непригодными для дальнейшего использования, да и пункт 8 должен быть исключён.

  •  Мы уже говорили о необходимости проведения расчета индекса сложности. Для расчёта индекса сложности выберите в меню Analyze (Анализ) Descriptive Statistics (Дескриптивные статистики) Frequencies... (Частоты)
Процентный показатель частоты появления правильного ответа (кодировка 1) является индексом сложности соответствующего пункта. Все индексы сложности собраны в нижеследующей таблице.

Пункт

Индекс сложности

Пункт

Индекс сложности

1

36,7

10

30,0

2

50,0

11

80,0

3

53,3

12

50,0

4

86,7

13

43,3

5

63,3

14

40,0

6

60,0

15

43,3

7

93,3

16

46,7

8

23,3

17

40,0

9

63,3

18

40,0

Если следовать рекомендации, сформулированной в начале раздела и исключать пункты с индексом сложности меньшим 20 и большим 80, то помимо пунктов 4, 8 и 17 необходимо исключить из списка и пункт 7.

Если вновь провести анализ пунктов с оставшимися четырнадцатью пунктами, то коэффициент пригодности получится равным 0,8297. Благодаря исключению неподходящих пунктов он стал ещё выше.

Содержание раздела