Задачи статистики в пакете SPSS

         

20.3.1 Переменные, относящиеся к интервальной шкале (метрические переменные)

Для переменных такого рода на выбор предлагается восемь различных мер расстояния и мер сходства, которые мы и рассмотрим далее. Примером расчёта послужат два наблюдения из файла assess.sav (см. гл. 20.3), для которых расстояние и подобие должны быть рассчитаны с использованием переменных t3 и t4:

t3



t4

Отто P.

5

4

Эльке М.

4

10

Евклидова дистанция (расстояние) 

Евклидова дистанция между двумя точками х и у — это наименьшее расстояние  между ними. В двух- или трёхмерном случае — это прямая, соединяющая данные точки. Общей формулой для n-мерного случая (л переменных) является: 1

Квадрат евклидового расстояния

Этот вариант устанавливается по умолчанию. Благодаря возведению в квадрат при расчёте лучше учитываются большие разности. Эта мера должна всегда использоваться при построении кластеров при помощи центроидного и медианного методов, а также метода Варда (Ward-Method) (см. разд. 20.5).

Косинус

Как и для корреляционных коэффициентов Пирсона, область значений этой меры находится между -1 и +1.

Корреляция Пирсона

Если кластеризация наблюдений осуществляется только на основании двух переменных, то корреляционный коэффициент Пирсона (см. разд. 15.1) со значениями находящимися в пределах от -1 до +1 не годится для использования в качестве меры подобия; он будет давать только значения -1 или +1.

Чебышев (Chebychev)

Разностью двух наблюдений является абсолютное значение максимальной разности последовательных пар переменных, соответствующих этим наблюдениям.

В приведенном примере абсолютная разность значений первой переменной равна 1, а второй переменной — 6. Поэтому разность Чебышева равна 6.

Блок (Block)

Эта дистанционная мера, называемая также дистанцией Манхэттена или в шутку — дистанцией таксиста, определяется суммой абсолютных разностей пар значений. Для двумерного пространства это не прямолинейное евклидова расстояние между двумя точками, а путь, который должен преодолеть Манхэттенский таксист, чтобы проехать от одного дома к другому по улицам, пересекающимся под прямым углом.

Минковский (Minkowski)

Расстояние Минковского равно корню r-ой степени из суммы абсолютных разностей пар значений взятых в r-ой степени:

Пользовательская мера

Это обобщенный вариант расстояния Минковского. Это расстояние, называемое также степенным расстоянием, равно корню r-ой степени из суммы абсолютных разностей пар значений взятой в р-ой степени:

Содержание раздела