Задачи статистики в пакете SPSS

         

20.2.3 Иерархический кластерный анализ с предварительным факторным анализом

Рассмотрим пример из области географии. В 28 европейских странах в 1985 году были собраны следующие данные, выступающие здесь в качестве переменных:

Переменная

Значение



land

Страна

sb

Процент городского населения

lem

Средняя продолжительность жизни мужчин

lew

ks

Детская смертность на 1000 новорожденных

so

Количество часов ясной погоды в году

nt

Количество дней пасмурной погоды в году

tjan

Средняя дневная температура в январе

tjul

Средняя дневная температура в июле

Эти данные вы увидите, если откроете файл europa.sav. Переменная land является текстовой переменной, предназначенной для обозначения страны.

Целью нашего кластерного анализа является нахождение стран с похожими свойствами. При самом общем рассмотрении переменных (от непосредственного указания стран мы здесь воздержимся) становится заметным, что данные, содержащиеся в файле связаны исключительно с ожидаемой продолжительностью жизни или с климатом. Лишь процентный показатель населения, проживающего в городах, не вписывается в эти рамки. Стало быть, сходства, которые возможно будут найдены между некоторыми странами, основываются на продолжительности жизни и климате этих стран.

Исходя из вышесказанного, в данном случае перед проведением кластерного анализа рекомендуется сократить количество переменных. Подходящим методом для этого является факторный анализ (см. гл. 19), который вы можете провести, выбрав в меню Analyze (Анализ) Data Reduction (Преобразование данных) Factor... (Факторный анализ)

Если Вы проведёте факторный анализ и примените, к примеру, вращение по методу варимакса, то получите два фактора. В первый фактор войдут переменные: lem. lew, ks и sb, а во второй фактор - переменные: so, nt, tjan и tjul. Первый фактор однозначно характеризует продолжительность жизни, причём высокое значение фактора означает высокую продолжительность жизни, а второй отражает климатические условия; здесь высокие значения означают тёплый и сухой климат. Вместе с тем, Вы наверняка заметили, что в первый фактор интегрирована и переменная sb, что очевидно указывает на высокую ожидаемую продолжительность жизни при высоких процентных долях городского населения. Вы можете рассчитать факторные значения для этих двух факторов и добавить их к файлу под именами fac1_1 и fac2_1. Чтобы Вам не пришлось самостоятельно проводить факторный анализ на этом этапе, указанные переменные уже включены в файл europa.sav. Вы можете видеть, к примеру, что высокой продолжительностью жизни обладают северные страны (высокие значения переменной fac1_1) или южные страны с тёплым и сухим климатом (высокие значения переменной fac2_1). Факторные значения можно вывести с помощью меню Analyze (Анализ) Reports (Отчёты) Case Summaries... (Итоги по наблюдениям)

Они выглядят следующим образом:

Case Summaries a (Итоги по наблюдениям)

LAND (Страна)

Lebenserwartung (Ожидаемая продолжительность жизни)

Klima (Климат)

1

ALBA

-1,78349

,57155

2

BELG

,55235

-,57937

3

BULG

-,43016

-,13263

4

DAEN

,97206

-,23453

5

DDR

,26961

-,3351 1

6

DEUT

,19121

-,44413

7

FINN

-,30226

-1,28467

8

FRAN

1,05511

1,04870

9

GRIE

,12794

2,65654

10

GROS

,75443

-,05221

11

IRLA

,16370

-,66514

12

ISLA

1,75315

-,97421

13

ITAL

,40984

1,68933

14

JUGO

-2,63161

-,44127

15

LUXE

-.16469

-,98618

16

NIED

1,31001

-,29362

17

NORW

,96317

-,46987

18

OEST

-,20396

-,31971

19

POLE

-,65937

-,92081

20

PORT

-1,10510

1,59478

21

RUMA

-1,32450

,09481

22

SCHD

1,22645

-,20543

23

SCHZ

, 56289

-,45454

24

SOWJ

-,67091

-1,32517

25

SPAN

, 83627

1,91193

26

TSCH

-,59407

-,40632

27

TUER

-,52049

1,04424

28

UNGA

-,75761

-,08695

Total N

28

28

28

a. Limited to first 100 cases (Ограничено первыми 100 наблюдениями).

Распределим эти 28 стран по кластерам при помощи двух факторов: ожидаемая продолжительность жизни и климат.

  •  Выберите в меню Analyze (Анализ) Classify (Классифицировать) Hierarchical Cluster... (Иерархический кластерный анализ)
  •  Переменные fac1_1 и fac2_1 поместите в поле тестируемых переменных, а переменную land (страна) — в поле с именем Label cases by: (Наименование (маркировка) наблюдений).
  •  После прохождения выключателя Statistics... (Статистики), наряду с таблицей порядка агломерации сделайте запрос на вывод информации о принадлежности к кластеру для наблюдений. Активируйте Range of solutions: (Область решений) и введите граничные значения 2 и 5.
  •  Для сохранения информации о принадлежности отдельных наблюдений к кластеру в виде дополнительных переменных, воспользуйтесь выключателем Save... (Сохранить). В соответствии с установками, произведенными в диалоговом окне статистики, активируйте и здесь Range of solutions: (Область решений) и введите граничные значения 2 и 5.
  •  Деактивируйте вывод дендрограмм. Так как переменные, используемые в данном кластерном анализе, являются факторными значениями с одинаковыми областями допустимых значений, то стандартизация (z-преобразование) значений является излишней.

Agglomeration Schedule 

(Порядок агломерации)

Stage (Шаг) Cluster Combined (Объединение в кластеры) Coefficients (Коэф-фициенты) Stage Cluster First Appears (Шаг, на котором кластер появляется впервые) Next Stage (Следу-ющий шаг)
Cluster 1 (Кластер 1) Cluster 2 (Кластер 2) Cluster 1 (Кластер 1) Cluster 2 (Кластер 2)
1 16 22 1,476 0 0 8
2 2 23 1,569 0 0 10
3 5 6 1,803 0 0 5
4 4 17 5,546 0 0 8
5 5 11 8,487 3 0 10
6 3 18 8,617 0 0 12
7 7 15 ,108 0 0 15
8 4 16 ,118 4 1 13
9 26 28 ,129 0 0 12
10 2 5 ,148 2 5 18
11 19 24 ,164 0 0 15
12 3 26 ,183 6 9 20
13 4 10 ,228 8 0 18
14 13 25 ,231 0 0 19
15 7 19 ,254 7 11 20
16 1 21 ,438 0 0 22
17 20 27 ,645 0 0 22
18 2 4 ,648 10 13 21
19 8 13 ,810 0 14 23
20 3 7 ,939 12 15 24
21 2 12 1,665 18 0 24
22 1 20 1,793 16 17 25
23 8 9 1,839 19 0 27
24 2 3 2,229 21 20 26
25 1 14 4,220 22 0 26
26 1 2 5,925 25 24 27
27 1 8 6,957 26 23 0
Сначала приводятся самые важные результаты. В таблице порядка агломерации Вы можете проследить последовательность образования кластеров; объяснения по этому поводу приводились в разделе 20.1. Скачкообразное изменение коэффициентов наблюдается при значениях 2,229 и 4,220; это означает, что после образования четырёх кластеров больше не должно происходит ни каких объединений и решение с четырьмя кластерами является оптимальным.

Принадлежность наблюдений к кластерам можно взять из нижеследующей таблицы, которая содержит также и информацию о принадлежности к кластерам для других вариантов решения (пять, три и два кластера).

Если Вы посмотрите на четырёхкластернное решение на нижеследующей таблице, то заметите, к примеру, что к третьему кластеру относятся следующие страны: Франция, Греция, Италия и Испания. Это страны с высокой продолжительностью жизни и тёплым климатом и поэтому не зря они являются предпочтительными для отдыха.

Cluster Membership (Принадлежность к кластеру)

Case (Случай)

5 Clusters (5 кластеров)

4 Clusters (4 кластера)

3 Clusters (3 кластера)

2 Clusters (2 кластера)

1:ALBA

1

1

2:BELG

2

2

2

1

3:BULG

3

2

1

4:DAEN 5:DEUT

2

2

6:DDR

2

2

1

7:FINN

3

-3

2

8:FRAN

4

3

-3

2

9:GRIE

4

2

2

1

10:iGROS

2

2

1

11:IRLA

2

2

1

12:ISLA

2

3

о

2

13:ITAL

4

4

1

1

14:JUGO

5

2

2

1

1 5:LUXE

3

2

2

1

16:NIED

2

2

1

17:NORW

2

2

2

1

18:OEST

3

2

2

1

19:POLE

3

2

1

1

1

20:PORT

1

1

1

1

21:RUMA

1

2

1

22:SCHD 23:SCHZ

2

2

1

24:SOWJ

3

1

i

2

!25:SPAN

4

1

26:TSCH

3

1

1

1

27:TUER 28:UNGA

1

2

1

1

Содержание раздела