14.3.2 Медианный тест
Для всех независимых выборок вычисляется общая медиана; затем подсчитывается, какое количество измеряемых величин находится ниже и выше медианы. Это приводит к построению полевой таблицы, содержащей 2*k полей, которая затем подвергается тесту хи-квадрат. Как уже указывалось, эффективность данного теста не очень высока.
Используем пример, использованный для изучения Н-теста по Крускалу и Уоллису.
-
В этот раз вместо указанного теста активируйте медианный тест.
-
Запустите расчёт путём нажатия ОК.
В окне просмотра появятся следующие результаты:
Frequencies (Частоты)
|
Altersklassen (Возрастные категории)
|
|
|
до 55 лет
|
56-65 лет
|
66-75лет
|
>75лет
|
syst. Blutdruck, Ausgangswert (Систолическое кровяное давление, исходная величина)
|
> медианы <=
медианы
|
18
|
19
|
24
|
7
|
34
|
32
|
23
|
17
|
Test Statistics (Статистика для теста) b
|
syst. Blutdruck, Ausgangswert (Систолическое кровяное давление, исходная величина)
|
N
|
174
|
Медиана
|
170,00
|
Хи-квадрат
|
4,333а
|
Df
|
3
|
Asymp. Sig. (Статистическая значимость)
|
,228
|
a.
0 cells (,0%) have expected frequencies less than 5. The minimum expected cell
frequency is 9,4. (В 0 ячеек (,0%) ожидается значение частоты менее 5. Минимальная ожидаемая частота в ячейке равна 9,4.)
b Grouping Variable: Altersklassen (Групповая переменная: возрастные категории)
Так как в Н-тесте получилась р = 0,079, то он оказывается более подходящим для выявления закономерностей.